大家好,我是小科,我来为大家解答以上问题。映射的概念教案,映射的概念很多人还不知道,现在让我们一起来看看吧!
一、定义
通常情况下,映射一词有照射的含义,是一个动词。在数学上,映射则是个术语,指两个元素集之间元素相互“对应”的关系名词;也指“形成对应关系”这一个动作动词。
1、设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应。
那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
2、像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
二、函数与映射的联系
函数与映射都是两个非空集合中元素的对应关系,函数与映射的对应都具有方向性,A中元素具有任意性,B中元素具有唯一性;即A中任意元素B中都有唯一元素与之对应。
三、、函数与映射的区别
1、函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。
2、函数要求每个值域都有相应的定义域与其对应,也就是说,值域这个集合不能有剩余元素,而构成映射的像的集合是可以有剩余。
3、对于函数来说有先后关系,即定义域根据对应法则产生的值域,而对于映射来说没有先后关系,两个集合同时存在。
扩展资料
1、映射中的两个集合A和B可以是数集,点集或由图形组成的集合以及其它元素的集合。
2、映射是有方向的,A到B的映射与B到A的映射往往是不相同的。
3、映射要求对集合A中的每一个元素在集合B中都有象,而这个象是唯一确定的.这种集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心。
4、映射允许集合B中的某些元素在集合A中没有原象,也就是由象组成的集合。
5、映射允许集合A中不同的元素在集合B中有相同的象,即映射只能是“多对一”或“一对一”。不能是“一对多”。
考资料来源:百度百科-映射
本文到此讲解完毕了,希望对大家有帮助。